If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3s^2-2s-4=0
a = 3; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·3·(-4)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{13}}{2*3}=\frac{2-2\sqrt{13}}{6} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{13}}{2*3}=\frac{2+2\sqrt{13}}{6} $
| 9^5x=27^2x-3 | | x-((x-0.1)-((x-0.1)-0.18))=88.20 | | x-(x-0.1)-((x-0.1)-0.18)=88.20 | | 4v^2-7v-3=0 | | 116-4x=(x+5) | | 4z-2z=0 | | 8k^2-9k-7=0 | | e^2×-5=0 | | 8m=—16 | | -2|x+1|+5=9 | | 4x-6=2x+6x=6 | | 18^(3x)=6 | | 0.4y^2-2y+2.5=0 | | 6z-15-3-6z=12 | | x+3/3+x-4/2=1 | | (2x+35-4x)=6 | | 7x+3+7x=75 | | 4y-6=-6(y-2) | | 7a-3=4+7a | | (y+2)(y-3)=0 | | 9x+23+10x+6=180 | | 5d+7=7d-5 | | 1,5x=7 | | 5.3+t=3.5t−2.7 | | -m+8=10 | | 2y+7=10+8y | | 6z-5=4z+11 | | 12y-18=14y | | (3y+4)/2=6 | | 6n+1=16+3n | | x/x+2=2 | | 3+8(x+1)=159 |